gaia.core.ends_coends module
Ends and Coends for GAIA Framework - Integral Calculus for Generative AI
Implements Section 7 from paper.md: “The Coend and End of GAIA: Integral Calculus for Generative AI”
THEORETICAL FOUNDATIONS: - Section 7.1: Ends and Coends as categorical integrals - Section 7.2: Sheaves and Topoi in GAIA - Section 7.3: Topological Embedding of Simplicial Sets - Section 7.4: The Geometric Transformer Model - Section 7.5: The End of GAIA: Monads and Categorical Probability
This completes the theoretical foundations of GAIA with integral calculus over categories, enabling topological vs probabilistic generative systems and geometric transformers.
- class gaia.core.ends_coends.CategoricalIntegral(name)[source]
Bases:
ABC
Abstract base for categorical integrals (ends and coends)
From (MAHADEVAN,2024) Section 7.1: Ends and coends as limits and colimits over twisted arrow categories
- class gaia.core.ends_coends.End(functor, name='End')[source]
Bases:
CategoricalIntegral
End of a functor F: C^op × C → D
∫_c F(c,c) - limit over twisted arrow category
From paper.md: “The End of GAIA represents the terminal object in the category of natural transformations”
- class gaia.core.ends_coends.Coend(functor, name='Coend')[source]
Bases:
CategoricalIntegral
Coend of a functor F: C^op × C → D
∫^c F(c,c) - colimit over twisted arrow category
From paper.md: “Coends represent the initial object for generative processes in GAIA”
- class gaia.core.ends_coends.Sheaf(base_space, name='Sheaf')[source]
Bases:
object
Sheaf on a topological space for GAIA
From (MAHADEVAN,2024) Section 7.2: “Sheaves and Topoi in GAIA”
Enables local-to-global reasoning in generative AI
- add_restriction_map(larger_set, smaller_set, restriction_map)[source]
Add restriction map from larger to smaller open set
- class gaia.core.ends_coends.Topos(base_space, name='GAIATopos')[source]
Bases:
object
Topos for GAIA - category of sheaves
From (MAHADEVAN,2024) Section 7.2: Elementary topos structure for generative AI reasoning
- class gaia.core.ends_coends.TopologicalEmbedding(simplicial_set, name='TopologicalEmbedding')[source]
Bases:
object
Topological embedding of simplicial sets
From (MAHADEVAN,2024) Section 7.3: “Topological Embedding of Simplicial Sets”
Connects discrete simplicial structure to continuous topology
- class gaia.core.ends_coends.CategoricalProbability(name='CategoricalProbability')[source]
Bases:
object
Categorical probability using monads
From (MAHADEVAN,2024) Section 7.5: “The End of GAIA: Monads and Categorical Probability”
Provides probabilistic reasoning in categorical framework