gaia.data.synthetic module
Synthetic Dataset Generation for GAIA
- gaia.data.synthetic.create_synthetic_dataset(n_samples=1000, n_features=20, n_classes=5, n_informative=None, n_redundant=2, random_state=42, device='cpu')[source]
Create synthetic classification dataset
- Parameters:
- Returns:
Tuple of (features, labels)
- Return type:
Tuple[<MockTorch name=’mock.Tensor’ id=’4349657872’>, <MockTorch name=’mock.Tensor’ id=’4349657872’>]
- gaia.data.synthetic.create_xor_dataset(n_samples=1000, noise=0.1, random_state=42, device='cpu')[source]
Create XOR dataset for testing categorical learning
- gaia.data.synthetic.create_regression_dataset(n_samples=1000, n_features=20, n_informative=10, noise=0.1, random_state=42, device='cpu')[source]
Create synthetic regression dataset
- Parameters:
- Returns:
Tuple of (features, targets)
- Return type:
Tuple[<MockTorch name=’mock.Tensor’ id=’4349657872’>, <MockTorch name=’mock.Tensor’ id=’4349657872’>]